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Abstract

This note is a short summary of Hamilton’s paper Three-manifolds
with positive Ricci curvature(cf [1]). It will explain basic properties
of Ricci flow equation and how these can be applied to geometry
problems. I read this paper with Yue Wu and Yunyang Xiao, dur-
ing the summer research program of The Hong Kong University of
Science and Technology, advised by Prof. Frederick Fong.
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1 Evolution equations

The evolution equation we are going to study is the following:

∂

∂t
gij = −2Rij

where gij is the metric tensor and Rij is the Ricci curvature tensor. Originally
it is obtained by considering the Euler-Lagrange equation of total scalar cur-
vature, i.e. integral of scalar curvature over the whole manifold. We shall see
in the below that this equation has good behaviour for manifolds with posi-
tive curvature. By studying its convergence behaviour, Hamilton obtained the
following result:

Theorem 1.1. Let X be a compact 3-manifold which admits a Riemannian
metric with positive Ricci curvature. Then X also admits a metric of constant
positive curvature.

Precisely, we are going to show that in dimension three, the Ricci flow equa-
tion admits a unique smooth solution converging to a Einstein metric at infinity.
The main theorem follows from the speciality of dimension. As a corollary, any
simply-connected threefold with a positive Ricci curvature metric must be dif-
feomorphic to S3.

To begin with, we need to show the existence of solutions for short time.
This is first proved by Hamilton:

Theorem 1.2. The evolution equation ∂
∂tgij = −2Rij has a solution for short

time on any closed manifold Xn with any initial Riemannian metric.

We won’t prove this theorem here. The orginal proof of Hamilton is rather
complicated since the linearization of equation is not strictly parabolic. Later
in 1983, DeTurck gave a simple proof of short existence(cf [2]). He modified the
equation by a diffeomorphism, so that the new equation is strictly parabolic. In
this case, the usual existence theorem can be applied.

The degeneracy is due to the full symmetry of the equation. In fact, the
diffeomorphism group of X acts on the space of Riemannian metrics by pull-back
and the equation is invariant under the this action. So the desired ellipticity
shall be obtained only after modulo diffeomorphims. This is the trick that
DeTurck used in his paper. And the phenomenon is rather similar to the case
of Yang-Mills equations(cf [3][4]), in which case we should exploit Uhlenbeck’s
gauge fixing theorem to deduce ellipticity.

2 Tensor maximum principle

The most powerful tool in the study of evolution equations is the maximum
principle. To apply this tool to our equation, we need to generalize it for tensors,
which was formulated by Hamilton in this paper.
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Definition 2.1. Given a map p : Sym2T ∗M → Sym2T ∗M , we say it satisfies
the null-eigenvector assumption if for any symmetric (0, 2)-tensor Mij and
its null-vector vi, we have p(Mij)(v, v) ≥ 0. Here null-vector means Mijv

i = 0
for any j.

Let gij(t) and Mij(t) be smooth one-parameter family of metrics and sym-
metric (0, 2)-tensors. Let Nij = p(Mij , gij) be a polynomial formed by contract-
ing products of Mij via the metric gij . Under such setting, Hamilton proved:

Theorem 2.2 (Tensor Maximum Principle). Suppose that on 0 ≤ t ≤ T we
have

∂

∂t
Mij ≥ ∆Mij + ukMij,k +Nij

where uk is some smooth vector field, possibly time-dependent. Assume Nij =
p(Mij , gij) satisfies the null-eigenvector condition, then if Mij ≥ 0 at t = 0,
then it remains so on 0 ≤ t ≤ T .

Note that this has nothing to with the dimension and the family of metrics
need not to satisfy the Ricci flow equation. This phenomenon will be frequent
in the following. We will transfer between general setting and three-dimension
Ricci flow case.

Proof. We proof by continuity method. It suffices to show that if Mij ≥ 0 at
t = 0, then it remains so on 0 ≤ t ≤ δ for some δ > 0.

Consider the tensor
M̃ij = Mij + ε(δ + t)gij

where δ is to be selected. We claim that M̃ij > 0 on 0 ≤ t ≤ δ for every ε > 0.
Then let ε→ 0 will finish the proof.

Let θ =sup{t ∈ [0, δ] : M̃ij > 0 on [0, t]}. Since M̃ij(0) = Mij(0) + εgij(0),

we must have M̃ij(0) > 0. Then continuity shows that θ > 0.
If our claim fails, then there exists a null-eigenvector vi of unit length at some

point x ∈ X. Let Ñij = p(M̃ij , gij), then by assumption we have Ñijv
ivj ≥ 0

at (x, θ).
Since p is a polynomial, there exists constant C1 > 0 depending only on

sup|Mij |, such that

|Ñij −Nij | ≤ C1|M̃ij −Mij |

Therefore we have

|Ñijvivj −Nijvivj | ≤ C1|ε(θ + δ)gijv
ivj | ≤ C1εδ

Hence
Nijv

ivj ≥ Ñijvivj − C1εδ ≥ −C1εδ

Here C1 depends only on sup|Mij | and gij , but not on ε and δ.
We extend vi to a vector field in a neighborhood of x with vi,j = 0 at x.

For example, we can parallel transport vi along radial geodesics. This extended
vector field is independent of t. Let f = M̃ijv

ivj , then f ≥ 0 on 0 ≤ t ≤ θ
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and all of X. Since f = 0 at (x, θ), we see that ∂f
∂t ≤ 0, f,k = 0 and ∆f ≥ 0 at

(x, θ).
Now choose C2 > 0 sufficiently large such that

∂

∂t
gij ≥ −C2gij

for all t ∈ [0, T ]. Then at (x, θ) we have

0 ≥ ∂f

∂t
=
∂Mij

∂t
vivj + ε+ ε(θ + δ)

∂gij
∂t

vivj ≥ ∂Mij

∂t
vivj + (1− 2δC2)ε

Since vi,j = 0 and M̃ijv
i = 0, we have

f,k = Mij,kv
ivj ,∆f = ∆Mijv

ivj

Together with the parabolic inequality, we see at (x, θ)

∂

∂t
Mijv

ivj ≥ ∆Mijv
ivj + ukMij,kv

ivj +Nijv
ivj ≥ Nijvivj

Combining the above inequalities, we have

C1δ ≥ 1− 2C2δ

This gives contradiction if δ < (C1 + 2C2)−1.

The following examples illustrate how this works. Suppose now that gij(t)
is a smooth solution of Ricci flow equation in dimension three defined on [0, T ),
where T is the maximal existence time. Then we have:

Theorem 2.3. If Ric ≥ εRg > 0 at t = 0, then it remains so on [0, T ), where
ε is some positive constant and R is the scalar curvature.

Proof. Consider the symmetric tensor Mij =
Rij

R − εgij . Direct computation
shows that:

∂

∂t
Mij = ∆Mij + (

2

R
gklR,l)Mij,k + (2εRij −

RQij + 2SRij
R2

)

where Qij and S are some tensors obtained from curvature tensor. By diag-
onalize the tensor at one point, we can show that the final term satisfies the
null-eigenvector condition. By tensor maximum principle, Mij remains semi-
positive for all time.

Similarly we can prove the following results:

(i) The eigenvalues of Ricci tensor approach each other at every point;

(ii) Estimate of |∇R| in terms ofR, so in particular we can obtainRmax/Rmin →
1 as t→ T .
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3 Long time existence

Here we explain how to obtain long time existence of Ricci flow equation. In
fact, Ricci flow equation of the form ∂

∂tgij = −2Rij admits no solution of infinite
time. Precisely, we have:

lemma 3.1. If R ≥ ρ > 0 at t = 0, then T ≤ 3
2ρ .

Proof. Direct computation shows that:

∂

∂t
R ≥ ∆R+

2

3
R2

Consider the ODE:
df

dt
=

2

3
f2

with f = ρ at t = 0. Explicitly the solution is given by:

f =
3ρ

3− 2ρt

Taking f as a function on X × [0, 3
2ρ ) constant on X direction. Then we have:

∂

∂t
(R− f) ≥ ∆(R− f) +

2

3
(R+ f)(R− f)

And maximum principle implies that R− f ≥ 0 on 0 ≤ t < T . Since f →∞ as
t→ 3

2ρ , we must have T ≤ 3
2ρ .

So what we mean by long time existence is not for this version of equation.
We will consider the normalized version of Ricci flow equation as follows.

Let g̃ij(t) = ψ(t)gij(t) such that:∫
X

dµ̃(t) ≡ 1

That is, the volume is preserved under flow. This explains the name ”normalized
equation”. Also, we set t̃ =

∫
ψ(t)dt. Under such transformation, the flow

equation now becomes:
∂

∂t
g̃ij =

2

3
r̃g̃ij − 2R̃ij

where r̃ is the average of scalar curvature. In this case, we have:

Theorem 3.2. The solution exists for all time, i.e. T̃ =∞.

To prove this, we need several steps. The first and hardest step is to show
that for unnormalized equation, Rmax →∞ as t→ T .

To prove this, we need the following general result(i.e., this holds in any
dimension):
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Theorem 3.3. Suppose the evolution equation ∂
∂tgij = −2Rij has a unique

solution on a maximal time interval [0, T ). If T < ∞, then supX |Rijkl| → ∞
as t→ T .

We sketch the proof of this theorem. Technically, we need a condition which
assures the convergence of metrics. The following lemma is the core of argument:

lemma 3.4. Let gij(t) be a one-parameter family of smooth metrics on X for
0 ≤ t < T (where T is not necessarily finite). Suppose:∫ T

0

supX |g′ij(t)|dt <∞

Then the metrics for different times are uniformly equivalent, and they C0-
converge to a continuous positive-definite symmetric tensor gij(T ).

So suppose T is finite and curvature is bounded, then this integral is bounded
and the metrics C0-converge to a continuous metric. A priori estimates of higher
derivatives then give rise to the C∞-convergence. Apply the short existence
result, this contradicts with the maximality of T .

In our case, we have shown that T is finite, so Rmax →∞ as t→ T due to
the positity of Ricci curvature. As a corollary, we see:

Corollary 3.5. We have: ∫ T

0

Rmaxdt =∞

Proof. Consider the following ODE:

df

dt
= 2Rmaxf

with f(0) = Rmax(0). By direct computation we can show:

∂

∂t
(R− f) ≤ ∆(R− f) + 2Rmax(R− f)

Hence R ≤ f on 0 ≤ t < T by maximum principle. Since Rmax →∞ as t→ T ,
we have f →∞. However, by definition of f we have:

logf(t)/f(0) = 2

∫ t

0

Rmax(θ)dθ

Therefore the integral diverges as t→ T .

Corollary 3.6. We have: ∫ T

0

rdt =∞

Proof. The result follows from previous corollary and two facts: Rmin ≤ r ≤
Rmax and Rmax/Rmin → 1 as t→ T .
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Our final lemmas are the following:

lemma 3.7. We have:

(i) R̃max/R̃min → 1 as t̃→ T̃ ;

(ii) R̃ij ≥ εR̃g̃ij for some ε > 0;

(iii) R̃max ≤ C <∞ on 0 ≤ t̃ < T̃ .

Proof. The first two follow from considering the scaling factor and what we have
proved for unnormalized equation. It suffices to prove the third assertion.

Since R̃ij ≥ εR̃g̃ij > 0, by volume comparison theorem we have:

Ṽ ≤ Cd̃3

By Myers’ theorem, d̃ ≤ CR̃
− 1

2
min. Thus we have Ṽ R̃

3
2
min ≤ C. But Ṽ ≡ 1 for

normalized equation, so we see that R̃min is bounded. Combined with first
assertion, we see that R̃max is bounded.

Now we are in the position to show the solution exists for all time. By
definition of normalized equation, we have:∫ T̃

0

r̃dt̃ =

∫ T

0

rdt =∞

However r̃ ≤ R̃max ≤ C, so T̃ must be ∞.

4 Convergence of Ricci flow

Now the solution of normalized Ricci flow equation exists for all time. Still, we
want to use Lemma 3.4 to deduce the convergence of metrics. But for normalized
equation, maximal time T̃ is not finite, and the right side of equation has an
extra term 2

3 r̃g̃ij . So we should make suitable decaying estimate for the right
side terms. This is the following:

Theorem 4.1. We have exponential decaying estimate:

|R̃ij −
1

3
r̃g̃ij | ≤ Ce−δt̃

Corollary 4.2. The metrics g̃ij(t) are uniformly equivalent, and C0-converge
to a continuous Riemannian metric g̃ij(∞).

We explain where the exponential term comes from, but omit the detailed
calculation. From this general observation it’s easy to obtain exponential de-
caying estimates for all relevent terms.

Suppose we have some equations in unnormalized case:

∂P

∂t
= ∆P +Q
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Then normalization will give:

∂P̃

∂t̃
= ∆̃P̃ + Q̃+

2

3
nr̃P̃

where n is some integer coming from scaling process. Therefore a suitable choice
of constant will give rise to:

∂

∂t
(eδt̃P̃ ) ≤ ∆̃(eδt̃P̃ ) + Q̃′

The maximum principle will then imply the exponential convergence.
Combining the above technique and Sobolev inequalities, we can similarly

obtain estimates of higher derivatives:

Theorem 4.3. For every k > 0, we have:

supX |∇kR̃c| ≤ Ce−δt̃

Corollary 4.4. The metrics gij(t) C
∞-converge to a smooth Riemannian met-

ric g̃ij(∞). And the limit metric has constant positive curvature.

Proof. Since in dimension three, the Riemannian curvature can be recovered
from Ricci curvature, thus we obtain uniform Ck-estimate of gij for all k. There-
fore the metrics converge smoothly to a smooth metric. The limit is Einstein due
to Theorem 4.1, and has constant curvature since we are in dimension three.
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